
Volume xx(200y), Number z, pp. 1–12

Effective Derivation of Similarity Transformations for
Implicit Laplacian Mesh Editing

Hongbo Fu† Oscar Kin-Chung Au‡ Chiew-Lan Tai§

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Abstract
Laplacian coordinates as a local shape descriptor have beenemployed in mesh editing. As they are encoded in the
global coordinate system, they need to be transformed locally to reflect the changed local features of the deformed
surface. We present a novel implicit Laplacian editing framework which is linear and effectively captures local
rotation information during editing. Directly representing rotation with respect to vertex positions in 3D space
leads to a nonlinear system. Instead, we first compute the affine transformations implicitly defined for all the
Laplacian coordinates by solving a large sparse linear system, and then extract the rotation and uniform scaling
information from each solved affine transformation. Unlikeexisting differential-based mesh editing techniques,
our method produces visually pleasing deformation resultsunder large angle rotations or big-scale translations of
handles. Additionally, to demonstrate the advantage of ourediting framework, we introduce a new intuitive editing
technique, called configuration-independent merging, which produces the same merging result independent of the
relative position, orientation, scale of input meshes.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling Boundary representations

1. Introduction

Recently, Laplacian coordinates have been proposed for
mesh editing due to their ability to capture surface detailsin-
trinsically. The resulting editing tools [SLCO∗04, ZRKS05]
allow the user to simply manipulate parts of a mesh, called
the handles, and the rest of the surface is reconstructed by
minimizing the Laplacian coordinates before and after edit-
ing. As the Laplacian coordinates are defined in the global
coordinate system, they are neither scale invariant nor ro-
tation invariant [LSCO∗04]. Therefore the main challenge
of Laplacian editing frameworks is to find appropriate local
transformations such that the transformed Laplacian coordi-
nates fit the orientations of the details in the deformed sur-
face.

Existing solutions either explicitly define the transfor-

† e-mail: fuhb@cs.ust.hk
‡ e-mail: oscarau@cs.ust.hk
§ e-mail: taicl@cs.ust.hk

mations at all the unconstrained vertices by interpolating
the user-specified transformations at the constrained ver-
tices [YZX∗04, ZRKS05, ZHS∗05] or implicitly define the
transformations with respect to the (unknown) deformed
surface [LSCO∗04, SLCO∗04, NSACO05]. However, these
methods only partially solved the problem: explicit methods
cannot infer the rotation information if the handles are only
translated, while implicit methods cannot tackle large angle
deformation.

In this paper, we present a novel implicit Laplacian editing
framework, which is linear and able to effectively capture the
local rotation transformations for the local features during
editing. Like [SLCO∗04], the ultimate goal of our frame-
work is to find a similarity transformation consisting of a
rigid transformation and a uniform scaling. To achieve inter-
active editing, like most previous Laplacian editing frame-
works, we aim to formulate a linear reconstruction problem.
It is well known that rigid transformations are nonlinearly
dependent on vertex positions in 3D space. Therefore, our
solution is to use affine transformations, which linearly de-

submitted to COMPUTER GRAPHICSForum(5/2006).



2 H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing

=
 =


(
a
)
 (
b
)
 (
c
)


Figure 1: Configuration-independent merging. The goal is
to merge the Mannequin head model (source) to the Venus
model (target). The user only specifies the correspondence
between the merging boundaries. In (a) and (b), the Man-
nequin head model has different positions, orientations and
scales. Our configuration-independent merging method pro-
duces the same result (c), given the same boundary corre-
spondence. The lines indicate two user-specified key corre-
spondences.

pend on vertex positions. By enforcing neighborhood co-
herence and user-specified boundary constraints, we solve
for the affine transformations in the least-squares sense. The
downside of using affine transformations is the introduc-
tion of shearing distortion. To remove shearing distortion,
we perform polar decomposition to extract from each of
the solved affine transformations a similarity transformation
consisting of only rotation and uniform scaling.

By binding each Laplacian coordinate with the corre-
sponding similarity transformation, our method appropri-
ately orients and scales the local features during editing.In
other words, the changes of the local features are implicitly
captured by the similarity transformations. Our framework
produces more visually pleasing editing results than previ-
ous related work for deformation with large angle rotations
and/or big-scale translations of handles.

Additionally, we present a new merging paradigm, called
configuration-independent merging, based on our Lapla-
cian framework. By configuration we refer to the rela-
tive position, orientation and scale of meshes. Most re-
lated previous merging techniques require the user to ad-
just the configuration of input meshes prior to merg-
ing [SLCO∗04, BKZ01, MBWB02]. Thanks to the implic-
itly defined transformations, our merging approach can elim-
inate this user interaction requirement. Our method com-
putes the transformations (corresponding to configuration
adjustment in existing methods) and solves for the merged
mesh simultaneously (Figure1). The user only specifies the
merging boundaries and indicates several key vertex corre-
spondences between the boundaries.

2. Previous Work

2.1. Differential-Based Editing

Recently, intrinsic differential representations (the Lapla-
cian coordinates [LSCO∗04, SLCO∗04, ZRKS05], the gra-
dient field [YZX∗04] and the first/second fundamental sur-
face forms [LSLCO05]) have been adopted to mesh editing
because the resulting editing tools are intuitive and detail-
preserving. Using these tools, the user can interactively edit
a region of interest (ROI) by manipulating a small set of han-
dles. As our framework is based on the Laplacian coordi-
nates, this discussion focuses on previous Laplacian-based
work.

The Laplacian coordinate (LC)δi at vertexvi (1≤ i ≤ n)
is defined as follows [LSCO∗04, SLCO∗04]:

δi = D(vi) = ∑
j∈N(i)

wi j (v j − vi),

whereN(i) is the index set of the 1-ring neighboring vertices
of vi andwi j is the weight of the edge(i, j). The resulting
LC is essentially a 3D vector in the global coordinate sys-
tem. Two common weighting schemes are uniform weight-
ing (wi j = 1/|N(i)|) [LSCO∗04, SLCO∗04] and cotangent
weighting (wi j = 1

|Ωi|
(cotαi + cotβi)) [MDSB02], where

|Ωi | is the area of the Voronoi cell associated withvi , and
αi , βi are the two angles opposite to the edge(i, j).

The underlying theory of Laplacian editing can be for-
mulated as the following linear system (subject to the user-
specified boundary condition)

D(ṽi) = M iδi , 1≤ i ≤ n, (1)

whereṽi is an unconstrained vertex (to be solved) andM i is
a 3×3 transformation matrix. To avoid having the LCs de-
viate from the normal directions,M i is mostly required to be
a combination of rotation and uniform scaling [SLCO∗04].
The method of Poisson mesh editing [YZX∗04] also results
in a linear system similar to Equation1, since in theory
the gradient operator followed by the divergence operator
is equivalent to the Laplace operator.

Depending on whetherM i is defined with respect
to the (unknown) deformed surface, existing differ-
ential based mesh editing can be classified as im-
plicit methods [LSCO∗04, SLCO∗04] or explicit meth-
ods [YZX∗04, ZRKS05, ZHS∗05]. Explicit methods define
M i without considering the deformed surface. Instead,M i

is defined by propagating the transformations at the han-
dles to all the unconstrained vertices, weighted by geo-
desic distances [YZX∗04, ZHS∗05] or a set of harmonic
fields [ZRKS05]. These methods can produce good defor-
mation when the handles undergo large-angle rotations, in-
cluding rotation angles greater than 2π. However, if the han-
dles are only translated, there is no change of orientation to
be propagated; thus these approaches cannot avoid shearing
distortion caused by handle translation (see an example in
Figure7).

submitted to COMPUTER GRAPHICSForum(5/2006).



H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing 3

Implicit methods defineM i with respect to the deformed
surface. This is essentially a chicken-and-egg problem. On
the one hand, the deformed surface is to be reconstructed
from the transformed LCs; on the other hand, the transfor-
mations are dependent on the resulting deformed surface.
Lipman et al. [LSCO∗04] proposed a heuristic method: they
first reconstruct a rough surface using the original LCs and
use the reconstructed surface to estimate a local rotation for
each vertex. Sorkine et al. [SLCO∗04] approximately rep-
resentM i as a function of the unknown vertex positions.
Existing implicit methods work well for small translations
and/or small rotation angles of handles. However, they do
not produce visually pleasing results when handles undergo
large angle rotations (Figure6) or big-scale translations (Fig-
ure7). Our implicit method can handle these types of large
deformation. Our framework has some similarity to Lipman
et al. [LSLCO05], which appeared after the initial submis-
sion of this paper [FT05] (see more detailed comparison in
Section6).

Recently, Sheffer and Krayevoy [SK04] proposed a repre-
sentation called pyramid coordinates to encode mesh details.
Their method produces more natural editing results than all
the existing differential based methods, including ours, at
the cost of expensive computation. Sumner et al. [SZGP05]
proposed an example-based deformation technique. Satisfy-
ing the specified vertex constraints, the deformed surface is
reconstructed from interpolated feature vectors providedby
examples meshes.

2.2. Mesh Merging and Surface Pasting

Mesh merging and surface pasting produce new models by
composing existing models. Biermann et al. [BMBZ02] pro-
posed a cut-and-paste editing technique that allows the user
to decide the degree of details of the source mesh to be
pasted onto the target mesh. Lévy [L0́3] proposed a merging
method by extrapolating parameterizations. Both methods
involve parameterizing the regions to be merged or pasted,
and thus are applicable only to regions homeomorphic to a
disk.

The merging methods of Yu et al. [YZX∗04] and Sorkine
et al. [SLCO∗04] connect two meshes at their open bound-
aries without 2D parameterization. Therefore, these methods
only require the merging boundaries to have the same topol-
ogy. In [SLCO∗04], the merging operation first fills the gap
between two boundaries and then mixes the details by sur-
face reconstruction. In [YZX∗04], the two boundaries are
first deformed to an intermediate boundary, and the defor-
mation is propagated from the deformed boundaries to the
interior of the meshes. The smoothness along the merging
boundary is improved by Poisson normal smoothing. Both
methods require the user to adjust the configuration of the
meshes to be merged.

3. Implicit Laplacian Editing Framework

This section introduces our implicit Laplacian editing frame-
work. We implicitly define local transformations in terms
of the (known) original vertex positions and (unknown)
deformed vertex positions. To avoid having the LCs de-
viate from the normal directions, thus suppressing shear-
ing distortion, these transformations are required to be
rigid [SLCO∗04]. However, rigid transformations in 3D
space nonlinearly depend on the vertex positions. To at-
tain linearity in the reconstruction in Equation1, we there-
fore adopt affine transformations. Since simply represent-
ing affine transformations in terms of the unknown vertex
positions makes the resulting system (Equation1) under-
constrained, we enforce neighborhood coherence to make
the reconstruction problem well-posed. The shearing distor-
tion accompanying affine transformations will be removed
in the second step described in the next section.

3.1. Implicitly Defined Local Deformation Gradients

Like [SLCO∗04, SP04], we define an affine transformation
for each vertex using that vertex and its neighbors as follows:

M ivk +di = ṽk, k∈ {i}∪N(i), (2)

whereM i is a 3×3 matrix,di is the translation vector, and
ṽk is the unknown vertex.M i anddi together define an affine
transformation atvi . Since the LCs to which the defined
affine transformations will be applied are local differenceof
vertex positions, what we really care for is onlyM i , called
thedeformation gradient[SZGP05].

By eliminating the translation vectordi , we rewrite Equa-
tion 2 in matrix form as

M iV i = Ṽ i (3)

where

V i = [vi − vi0 v j1 − vi0 · · · v j|N(i)|
− vi0]

Ṽ i = [ṽi − ṽi0 ṽ j1 − ṽi0 · · · ṽ j|N(i)|
− ṽi0]

, j∗ ∈ N(i)

with

vi0 =
1

|N(i)| ∑
j∈N(i)

v j and ṽi0 =
1

|N(i)| ∑
j∈N(i)

ṽ j .

To get a least-squares solution forM i in Equation3, we con-
sider the following equations

M iV iV
T
i = Ṽ iV

T
i .

If V iV
T
i is invertible, we can directly deriveM i as

M i = Ṽ iV
T
i (V iV

T
i )−1. (4)

The above expression is similar to the derived deforma-
tion gradient in [SP04]. The deformation gradient in their
work always has a closed form expression because the ver-
tices used to define the deformation gradient form a basis of
3D space, whereas we need to handle the special case when
V iV

T
i degenerates to a singular matrix (Section3.3).

submitted to COMPUTER GRAPHICSForum(5/2006).



4 H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing

3.2. Neighborhood Coherence

We first assume thatM i is well defined for each uncon-
strained vertex; the degenerate case will be discussed in the
next subsection. By applyingM i to the corresponding LCδi ,
we wish to reconstruct the editing vertex positions by mini-
mizing the following error functional

EL =
n

∑
i=1

‖D(ṽi)−M iδi‖
2, (5)

However, this reconstruction problem by itself is under-
constrained [SLCO∗04].

To make the reconstruction problem well-posed, we
introduce a neighborhood coherence term to regularize
the implicitly defined deformation gradients. Similar to
[ACP03, SP04], we require the deformation gradients ap-
plied within a surface region to be as similar as possible.
Specifically, besidesEL, we also minimize the following er-
ror functional

ER =
n

∑
i=1

∑
(i, j)∈SF

‖M i −M j‖
2
F , (6)

whereSF is the set of pairs of neighboring vertex indices and
‖ ·‖F is the Frobenius norm. Since the deformation gradient
defined at each vertex is used to deform the features locally
(by transforming the corresponding LC), the neighborhood
coherence term essentially minimizes the difference in de-
formation at neighboring vertices.

We now prove that given the position and the deforma-
tion gradient at an arbitrary mesh vertexv0, the minimiza-
tion problem in Equation5 with the neighborhood coher-
ence constraint‖M i −M j‖F = 0 is well-posed. First, we
prove that with the neighborhood coherence constraint and
the given deformation gradient, all the deformation gradients
at the unconstrained vertices can be uniquely determined. As
‖M i −M j‖F = 0 impliesM i = M j , the transformations at
vertices adjacent tov0 must be the same as the given de-
formation gradient atv0. With the same argument, all the
deformation gradients at the unconstrained vertices can be
determined, and are equal to the given deformation gradient
at v0. Second, we prove that, with all the computed defor-
mation gradients and the given position constraint atv0, the
positions of all the unconstrained vertices can be uniquely
determined. AfterM i is computed, the optimization in Equa-
tion 5 is equivalent to solving a simple Poisson system,
which has a unique and exact solution given one position
constraint [SLCO∗04].

When more than one position and more than one defor-
mation gradient are constrained, exact solution is not guar-
anteed. The unique solution is solved by minimizingEL +ER
in the least squares sense. Formally, the final optimizationis
formulated as follows

arg minE(ṽ1, . . . , ṽn) = EL +ER (7)

subject to ṽbj = u j , j ∈ {1. . .s}

Figure 2: Left: the original cactus model. Middle: the de-
formed cactus by rotating and translating the top handle.
Right: The reconstructed model after a global transforma-
tion (including translation, rotation and uniform scaling) is
applied to the handle of the original cactus model (left). We
render the ROI in blue and the handle(s) in purple in all the
examples.

M ck = Wk, k∈ {1. . .t}

whereu j is the position of the vertex with indexb j on the
boundary condition,Wk is the local deformation gradient at
the vertex with indexck on the boundary condition, andsand
t are the number of position constraints and the number of
transformation constraints, respectively. Usually, we specify
both the positions and the deformation gradients for the same
set of boundary vertices (i.e.{ṽbj } = {ṽck}). Nevertheless,
it is possible to specify only the deformation gradients for
the boundary vertices, and let their positions be free, or vice
versa.

As M i is linearly dependent on the unknown ver-
tex positions, M i and ṽi are simultaneously solved
from the optimization in Equation7. Therefore, the
formulated optimization can be used for mesh defor-
mation: like previous Laplacian surface editing work
[SLCO∗04, YZX∗04, LSLCO05], we allow the user to in-
teractively change the boundary condition through manipu-
lating the handles and reconstruct the unconstrained region
of interest from the optimization. During editing, the lo-
cally defined deformation gradients accommodate the local
changes of details (see an example in Figure2).

3.3. Handling Degenerate Vertices

This section explains how we handle the special case when
V iVT

i is singular in Equation4. We refer to the correspond-
ing vertexvi as adegenerate vertex. For a degenerate vertex
vi , the rank ofV iV

T
i is equal to 2, which means thatvi and its

neighbors are coplanar. In practice, meshes with high reso-
lution are locally smooth. Therefore, degenerate verticesare
common. As the uniqueness of the solution to the optimiza-
tion in Equation7 is under the condition that the neighbor-
hood coherence term is well defined for every pair of neigh-

submitted to COMPUTER GRAPHICSForum(5/2006).



H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing 5

boring vertices, we have to implicitly define the transforma-
tions for all the vertices, including the degenerate vertices.

Our basic idea of handling degenerate vertices is to move
vi out of the plane defined by its neighboring vertices. Let
v′ i denote the modified vertex ofvi . Since the direction of a
nondegenerate LC approximates the normal, we placev′ i in
the normal direction ofvi (see Figure3 (b)). Typically, we
set

v′ i = vi +
sdisp

|N(i)| ∑
j∈N(i)

‖vi − v j‖ ·ni , (8)

whereni is the unit normal vector atvi andsdisp is a scal-
ing factor. We traverse the entire vertex list to handle all the
degenerate vertices. We classifyvi as a degenerate vertex if
and only if the condition number ofV iV

T
i is greater than a

given threshold (e.g., 2.0× 105). If a degenerate vertex is
on an open boundary, we adopt a small variation: if its va-
lence is less than 3, we insert a new vertex at the midpoint
of its opposite edge; if its neighboring vertices are collinear,
we displace one of its neighboring non-boundary vertices in-
stead ofvi itself.

After defining the deformation gradients for all the uncon-
strained vertices, we solve for the positions of the uncon-
strained vertices using Equation7. Since the optimized po-
sition of ṽ′i , corresponding to the modified vertexv′i of a de-
generate vertexvi , is influenced by our deliberate displace-
ment (Figure3 (c)), we need to pull̃v′i back to the correct
positionṽi (Figure3 (d) and (e)). AsM i is already computed

(
a
)
 (
b
)
 (
c
)


(
d
)
 (
e
)
 (
f
)


Figure 3: Handling degenerate vertices. (a) A planar irregu-
lar triangular mesh with the boundary vertices and the ver-
tices in the central region as the boundary constraints. (b)
After displacing every degenerate vertex. (c) Editing with-
out removing the displacement. (d) and (e): Editing with the
displacement removed, using uniform weighting and cotan-
gent weighting, respectively. (f) Reconstruction errors are
distributed over the ROI. All the images in this paper are
flat-shaded to better demonstrate that the errors introduced
by the handling of degenerate vertices are unnoticeable.

Figure 4: Difference between using cotangent weights (b)
and uniform weights (c).

at this stage, we obtain the new positions of the degenerate
vertices by applying the associated affine transformationsto
the original vertex positions (before the deliberate displace-
ments):ṽi = M i(vi − v′ i)+ ṽ′i .

There is no stability problem as long as all the deforma-
tion gradients for the degenerate vertices are defined prior
to the optimization (cf. Section3.2). Nevertheless, the han-
dling of degenerate vertices does introduce two types of er-
rors in the editing results, albeit unnoticeable. Computing
the edited positioñv′i instead ofṽi through optimization in-
troduces the first type of error, which is an increasing func-
tion of sdisp. We experimented with various scaling factors
(e.g.,sdisp = 0.2 andsdisp = 10) and found that the result-
ing shapes are of little visual difference (see an example in
Figure 6). Thus we use a small fixed scaling factor (e.g.,
sdisp = 0.2) in all our experiments.

The second type of error arises because the edited posi-
tions of the degenerate vertices are computed throughlinear
transformations (̃vi = M i(vi − v′ i)+ ṽ′i ) whereas the edited
positions of the nondegenerate vertices are solved in the
least-squaressense. We found that discretizing the Lapla-
cian using cotangent weights gives much better results (Fig-
ure3 (e)) than using uniform weights (Figure3 (d)). We il-
lustrate the reason using a 2D example in Figure4. Vertex
vi is an unconstrained degenerate vertex, which is displaced
to v′i before editing. The LC atv′i is δ1 (close to the nor-
mal direction) if cotangent weights are used orδ2 (with a
tangential componentt) if uniform weights are used. After
editing, the tangential componentt in δ2 would cause tan-
gential drifting, bringing the vertex "away" from the surface
(Figure4 (c)), especially at vertices in curved regions after
editing (Figure3 (d)), producing visual artifact and a bigger
reconstruction error.

It is noteworthy that in the shearing removal step (de-
scribed in the next section), solving the system (Equation9
or 10) in the least-squares sense makes the second type of
errors uniformly distributed to the whole ROI, making the
errors unnoticeable (Figure3 (f)).

submitted to COMPUTER GRAPHICSForum(5/2006).



6 H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing

Figure 5: An deformation example without shearing re-
moval (Left) and with shearing removal (Right).

4. Shearing Removal by Polar Decomposition

The deformation gradients may contain shearing transforma-
tions, making the LCs deviate from the normal directions
and thus causing shearing distortion.

The neighborhood coherence term only partially solves
the shearing problem. When different rigid transformations
are applied to different handles, shearing problem may
occur. The neighborhood coherence term only guarantees
that features close to the handle boundaries deform almost
rigidly†. Shearing distortion may occur at regions far away
from the constrained regions since the rigid transformations
applied to the handles has less influence on the transforma-
tions defined over the far-away regions (Figure5 left).

To overcome the shearing problem, we introduce an ad-
ditional step after solving the optimization in Equation7.
Since what we really care for in the information encoded in
M i is the rotation part and the uniform scaling part, similar
to [MHTG05], our solution is to extract the rotation and uni-
form scaling information fromM i by polar decomposition.

We first perform the singular value decomposition (SVD)
on M i : M i = UiW iVT

i , whereUi andV i are two 3× 3 or-
thogonal matrices andW i is a 3×3 diagonal matrix whose
elements are the eigenvalues (λ j ,1≤ j ≤ 3) of M i . Next we
define the modified the deformation gradient without shear-
ing asM ′

i = RiSi , whereRi = UiV
T
i andSi = diag(si ,si ,si)

with si =

√

λ2
1+λ2

2+λ2
3

3 .

We provide the user two options: to retain the sizes of the
local features or automatically scale the geometric features
during deformation. The respective underlying systems of
the former and latter choices are

D(ṽi) = Riδi (9)

† According to the formulation of the neighborhood coherence
term, the more neighboring vertices we use to define the coherence
term, the wider will be the rigid region (close to the handle bound-
aries). This is a desirable property. However, there are twoside ef-
fects of using more vertices. First, thelocal deformation of features
will be suppressed. An extreme example is to define the coherence
term using the whole region of interest. Second, the introduction of
more vertices makes the system matrix denser. We choose to use
2-ring neighbors (cf.SF in Equation6) as it is a good trade-off.

(
a
)
 (
b
)
 (
c
)
 (
d
)
 (
e
)
 (
f
)


Figure 6: (a) The original bar model with an ROI (blue) and
two handles (purple). After the top handle undergoes a large
rotation, (b) and (c) are our results by setting sdisp= 0.2 and
sdisp = 10, respectively, which have little visual difference.
The difference between corresponding vertices is shown in
(d) with red color denoting relatively big difference and yel-
low color denoting no difference. (e) and (f) are the defor-
mation results with methods in [LSCO∗04] and [ZRKS05],
respectively.

or

D(ṽi) = RiSiδi . (10)

The first choice is mainly used when the user applies rigid
transformations (including rotation and translation and ex-
cluding scaling) to the handles. The second choice is of-
ten adopted when the transformations applied to the han-
dles include scaling. Note that the second choice is neces-
sary for configuration-independent merging (Section5.1), as
we want the scales of the features to be automatically deter-
mined.

With this shearing removal step, our deformation tool al-
ways produces more visually pleasing results than previous
methods for large angle rotation or big-scale translation.Fig-
ure 6 shows an example when the top handle of the verti-
cal bar undergoes a large rotation. Our method outperforms
existing implicit methods [LSCO∗04, SLCO∗04] ‡. Note
that, like ours, explicit methods [ZRKS05, YZX∗04] also
produce natural deformation results as transformations are
explicitly propagated (see more discussions in Section6).

Figure7 demonstrates the effectiveness of our method for
deformation under big-scale translation of the handle. Ex-
plicit methods [YZX∗04, ZHS∗05, ZRKS05] cannot infer
any rotation information from translations of handles (Fig-
ure7 left). Implicit methods [LSCO∗04, SLCO∗04] can cap-
ture rotation under small-scale translation but do not work
for big-scale translation (Figure7 middle). With our method,
the global shapes in the deformed model (e.g., the whole

‡ Here we only compare with [LSCO∗04] and not with
[SLCO∗04] as the latter only includes a small refinement on the
results of the former when the approximation error is large.

submitted to COMPUTER GRAPHICSForum(5/2006).



H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing 7

Figure 7: An example of rotation of local features resulting from translation of handles. The deformation results by [ZRKS05]
(Left), [LSCO∗04] (Middle) and ours (Right) when the handle at the tail of the dinosaur undergoes a big-scale translation.

(
a
)
 (
b
)
 (
c
)
 (
d
)


Figure 8: (a) The original Armadillo model with four handles specified. (b) and (c): Two views of the deformed model by
applying several rigid transformations to the handles. (d)The deformation result with the same view as (c) but without shearing
removal.

Figure 9: An example of scaling local features edited by translating handles. Left: the input lion model. Middle: the deformed
model without scaling the LCs. Right: the deformed model with scaling the LCs.

arms and legs) are appropriately rotated and the local de-
tails are well preserved. This example also demonstrates
that most rotation information is successfully captured by
the affine transformations and effectively extracted in the

shearing removal step. Figure8 illustrates that it is easy to
use our deformation tool to produce complicated but visu-
ally pleasing deformation results by simply applying sev-
eral rigid transformations to the handles. The contrast be-

submitted to COMPUTER GRAPHICSForum(5/2006).



8 H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing

(
a
)


(
b
)
 (
c
)


Figure 10: Configuration-independent merging: the Headus
skull model (b) is deformed and merged to the ears of the
Stanford Bunny (a). The two merging boundaries have un-
dulations and are of different shapes.

tween (c) and (d) clearly demonstrates the effectiveness of
our shearing removal procedure.

The above examples are obtained by retaining the sizes
of the geometric features (cf. Equation9). Sometimes let-
ting the system automatically scales the LCs is useful (cf.
Equation10). In Figure9, the handles are moved closer to
each other, thus the space between them becomes smaller
and cannot accommodate the big global features of the origi-
nal body. Automatically scaling the LCs (using Equation10)
gives a better visual result.

5. Mesh Merging

In this section, we present two methods of mesh merging:
configuration-independent merging and configuration-
dependent merging. Although some existing tech-
niques [YZX∗04, ZRKS05, LSLCO05] could be adopted to
implement configuration-independent merging, we believe
that this is the first time such an application is proposed.

5.1. Configuration-Independent Merging

The configuration of the objects to be merged refers to their
relative position, orientation and scale. For simplicity,we as-
sume that thetarget meshis fixed during merging, and let the
relative position, orientation and scale of thesource meshbe
free. The merging is accomplished by deforming the merg-

ing boundary of the source mesh (and the entire source mesh
as the ROI) to the merging boundary of the target mesh§.

Having the user adjust the configuration of input meshes
is equivalent to applying a global similarity transforma-
tion to the source mesh. Recall that differential-based edit-
ing frameworks deform an ROI by modifying the boundary
condition. Therefore, the basic requirement of performing
configuration-independent merging using such frameworks
is that when a global similarity transformation is applied
to the boundary condition, the positions of the vertices in
the ROI, obtained through solving the optimization with the
modified boundary condition, must reflect the same transfor-
mation. Figure2 (right) demonstrates that our method satis-
fies this requirement.

To perform configuration-independent merging, the user
only needs to establish the correspondence between the
source merging boundary and the target merging bound-
ary. We implement a vertex correspondence tool similar
to [YZX∗04]. From a set of user-specified key vertex cor-
respondences, our system finds the corresponding position
on the target merging boundary for each remaining vertex
on the source merging boundary by curve parameterization.
These positions will be used as position constraints of the
optimization.

Next we need to compute a rotation transformationRi and
a scaling factorsi for each pair of corresponding vertices
(vs

i ,v
t
i ), wherevs

i is a vertex on the source merging boundary
and vt

i is its corresponding position on the target merging
boundary. By defining two local frames atvs

i andvt
i (com-

posed of the associated tangent vector along the boundary
curve, unit normal vector and the cross product of the previ-
ous two vectors), we computeRi as the transformation from
the local frame atvs

i to the local frame atvt
i . The scaling fac-

tor si is computed as the ratio of the tangent magnitude atvt
i

to the tangent magnitude atvs
i . The deformation gradientM i

is then defined asRiSi (Si = diag(si ,si,si)) and used as the
transformation constraint of the optimization.

With the position and transformation constraints, we solve
the optimization in Equation7 to deform the source mesh
and merge it to the target mesh. The shearing distortion is
removed in the same way as in mesh deformation applica-
tion. To get a watertight seam, we trivially zip the target
merging boundary and the deformed source merging bound-
ary [SLCO∗04] by removing one band of triangles adjacent
to the target merging boundary and re-triangulating the re-
sulting gap. To improve smoothness at the seam, we apply
several iterations of the umbrella operator [Tau95]. Detail-
preserving merging is discussed in Section5.3.

Figure 1 shows the result of merging a source mesh to
a target mesh in two different configurations. This example

§ An alternative approach, which we did not implement, is to merge
the meshes along a user-specified intermediate boundary [YZX∗04].

submitted to COMPUTER GRAPHICSForum(5/2006).



H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing 9

(
a
)
 (
b
)
 (
c
)
 (
d
)


Figure 12: The hind part of the Feline model is deformed and merged to thefore part of the Dinosaur model. (b) is the result of
configuration-independent merging with the configuration in (a), and (d) is the result of configuration-dependent merging with
the configuration in (c). In the configuration-dependent merging, the two feet are specified as handles (purple), thus remain
fixed. The same boundary correspondence is used for both merging.

demonstrates that, given the same boundary correspondence,
our configuration-independent merging method produces the
same result. Figure10 demonstrates that our method also
works well for merging boundaries of different shapes and
with undulations. Figure11shows an example with multiple
pairs of merging boundaries. The center CAD model (source
mesh to be deformed) is to be merged to the four cylinders
(fixed target meshes). The CAD model is symmetrical, but
the four cylinders have different scales. With configuration-
dependent merging [SLCO∗04], the user would have great
difficulty adjusting the configuration of the CAD model.
Our configuration-independent merging method creates the
same result independent of the configuration. This exam-
ple also demonstrates that the merging method is applica-
ble to meshes with non-zero genus. The close-up shows that
the smoothness across the merging boundary is not satisfac-
tory. Section5.3 addresses this problem by using overlap-
ping transition merging regions.

Figure 11: A configuration-independent merging example
with multiple pairs of merging boundaries.

5.2. Configuration-Dependent Merging

In configuration-independent merging, the entire source
mesh is deformed and merged to the target mesh. If the
size of the source mesh is very large, computation would be
expensive. Allowing only the region near the source merg-
ing boundary to be deformed can accelerate the merging
progress. Moreover, the user may want to specify handles
so as to fix certain features on the source mesh. Such tasks
can be achieved using configuration-dependent merging.

For configuration-dependent merging, the user specifies
the configuration of the source and the target mesh as well
as a set of handles on the source mesh. The remaining algo-
rithm is the same as the configuration-independent merging
except the following. We modify only the positions of the
source boundary vertices and their scaling factors, keeping
their local frames unchanged. The deformed source merging
boundary and the fixed handles together provide the bound-
ary condition to the optimization problem. This is similar to
the transplanting method in [SLCO∗04].

Figure 12 compares some results of the two merging
methods. With configuration-independent merging, the legs
of the Feline model are not in harmony with the legs of the
Dinosaur model. With configuration-dependent merging, we
adjust the position, orientation and scale of the Feline model
and fix the two feet, and the merging result is better.

5.3. Merging with Overlapped Transition Region

We have assumed so far that no transition region is speci-
fied for merging. The target mesh is never deformed. In or-
der to coincide with the target merging boundary, the source
merging boundary is deformed (consequently deforming the
whole source ROI too). Since the geometry near the tar-
get merging boundary and the geometry near the deformed

submitted to COMPUTER GRAPHICSForum(5/2006).



10 H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing

source boundary are usually different, smoothing needs to
be performed [YZX∗04]. This smoothing step however also
filters out geometry details.

To produce merging region with smoothly transited de-
tails, the user could specify a transition region on both the
source mesh and the target mesh [SLCO∗04]. The ROIs of
both meshes are deformed and the details are mixed by inter-
polating the LCs in the transition regions. For configuration-
independent merging, we first apply the implicitly defined
local deformation gradients onto the LCs before interpolat-
ing them.

We let the user specify a width for each mesh and de-
fine the transition region as the region encompassing all ver-
tices whose shortest path to the merging boundary has a
length less than a specified width. Correspondence between
the merging boundaries is established by specifying several
key vertex correspondences. (Figure13 (a)). For correspon-
dence between the transition regions, we cut each transi-
tion region along the shortest path between two key ver-
tices and parameterize the region over the unit square do-
main. A vertexvi in one transition region is mapped to a
positionvi within a triangleτ in the other transition region,
vi = bi1vi1 +bi2vi2 +bi3vi3 , wherevi∗ are the vertices of tri-
angleτ and bi∗ are the corresponding barycentric coordi-
nates.

We add an additional error termET to the optimization
problem.

ET = ∑
i∈TR

‖Miδi −
3

∑
j=1

bi j Mi j δi j ‖
2,

whereTRis the index set of vertices in the transition regions,
andMi∗ andδi∗ are the corresponding affine transformations
and Laplacian coordinates ofvi∗ , respectively. Adding the
error term to the objective function of the optimization prob-
lem, we get

arg minE(ṽ1, . . . , ṽn) = EL +ER+wTET ,

wherewT is a weight (e.g.wT = 0.1 in our experiments). By

(
a
)
 (
b
)


Figure 13: Configuration-independent merging with over-
lapped transition regions. (a) Two transition regions withkey
correspondences specified. (b) The merging result.

minimizing the objective function with the same boundary
condition as before, we obtain a merged mesh. The optimal
solution, however, generally does not overlap two transition
regions exactly. Therefore, like the method in [SLCO∗04],
we reconstruct a smooth transition by using the connectivity
information of one transition region and the linearly interpo-
lated LCs (Figure13 (b)).

6. Implementation Details and Discussions

The solution of the optimization in Equation7 and the so-
lution of the linear system in Equation9/10 are obtained by
solving the following form of normal equations

ATA[Vx Vy Vz] = AT [bx by bz],

whereVx, Vy andVz are corresponding components (x, y,
andz) of the unconstrained vertex positions,bx, by andbz

are three known vectors constructed from the position and
transformation constraints, andA is a large sparse matrix.
As matrixA is only dependent on the original mesh and each
row of the deformation gradients (Equation4) is only de-
pendent on one dimension (e.g.x coordinates), we can pre-
factorizeATA using Choleskey factorization and solveVx,
Vy andVz separately by back substitution. In practice, we
use an efficient sparse linear solver [Tol03]. Table1 lists the
number of unconstrained vertices, the number of degenerate
vertices, the factorization time and back-substitution time in
Equations7 and9/10as well as the time for computing SVD
for all deformation gradients.

Given the boundary condition, the unknown surface is re-
constructed through optimization, guaranteeing that any er-
rors are distributed over the entire unknown surface. How-
ever, the resulting deformation is still sensitive to the reso-
lution of the boundary condition. For example, if a complex
ROI is subject to a boundary condition consisting of only 3
vertices, then the reconstructed surface would be extremely
sensitive to the changes in the positions or in the local de-
formation gradients of the boundary vertices. Therefore, for
boundaries with considerably fewer vertices relative to the
ROI, we first perform a local refinement. This is particularly
useful in configuration-independent merging (without over-
lapped transition regions), since the boundary condition is
composed of only one boundary curve.

We note that, due to the fact that transformations are ex-
plicitly propagated rather than determined via optimization,
explicit methods [YZX∗04, ZRKS05] can handle rotation
angles of handles larger thanπ. Being an implicit method,
our system does not support editing with rotation angles
larger thanπ. The transformations are implicitly defined and
solved simultaneously with the vertex positions by minimiz-
ing distortion. Since a larger angle would give greater dis-
tortion, our system always chooses the transformation with
the smallest rotation angle (< π). To perform deformation
with large rotation angles (> π), one possible way is to use

submitted to COMPUTER GRAPHICSForum(5/2006).



H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing 11

Mesh Free Degenerate Factor Solve Factor Solve SVD
Vertices Vertices (Eqn7) (Eqn7) (Eqn9/10) (Eqn9/10)

Feline (Fig.12 (c)) 7,733 186 0.593s 0.032s 0.203s 0.015s 0.125s
Lion 7,903 77 0.313s 0.015s 0.063s 0.016s 0.156s
Cactus 8,978 41 0.359s 0.031s 0.078s 0.015s 0.172s
CAD (Fig. 11) 9,050 1,839 0.563s 0.031s 0.110s 0.015s 0.156s
Feline (Fig.12 (a)) 9,434 206 0.718s 0.032s 0.125s 0.016s 0.187s
Dinosaur 13,252 3 0.625s 0.031s 0.110s 0.015s 0.266s
Mannequin head 16,219 534 1.437s 0.062s 0.234s 0.032s 0.328s
Headus skull 16,982 77 1.390s 0.062s 0.203s 0.031s 0.329s
Bar 24,480 5,852 2.516s 0.109s 0.453s 0.032s 0.469s
Armadillo 48,027 61 4.813s 0.188s 0.875s 0.078s 0.985s

Table 1: The timing results for our examples on a 3.2GHz Pentium IV machine with 1G RAM.

more handles such that rotation angles between successive
handles is smaller thanπ.

Although performing SVD on a 3×3 matrix is fast, per-
forming SVD on a large set of deformation gradients still
becomes the bottleneck of our system. Since solving the op-
timization in Equation7 is fast (only involving the back-
substitution), the screen is updated using the solved vertex
positions when the user is manipulating a handle. SVD and
the back-substitution of the second linear system are per-
formed only when the user stops moving the handle. This
allows our system to remain at interactive rate for editing
large scale meshes.

The parallel work of Lipman et al. [LSLCO05] is similar
to ours. Their method binds triple vectors defining a discrete
frame to each vertex. The discrete frames before and after
editing essentially determine a deformation gradient (likeM i
in our framework). Essentially, in their method, the local de-
tails (rigid-invariant coordinates) at each vertex are encoded
in the corresponding discrete frame, while in ours the lo-
cal details (the LCs) are defined with respect to the corre-
sponding deformation gradients. Since the discrete frames
in [Lipman et al. 2005] are nonlinearly dependent on vertex
positions, the discrete frames and vertex positions cannotbe
formulated and solved as a single linear system. To make the
reconstruction problem linear, their method uses two sparse
linear systems: one for solving the discrete frames (using
only the transformation constraints) and the other for solv-
ing the vertex positions given the discrete frames obtained
from the first system (using the position constraints only).In
our method, the deformation gradients are solved using only
one linear system (considering both the position and trans-
formation constraints). Our solution avoids the incompatibil-
ity between the position and transformation constraints en-
countered in [Lipman et al. 2005] at the cost of introducing
more shearing distortion. Consequently, we introduce an ad-
ditional step to remove the shearing distortion.

7. Conclusion

This paper presents an implicit Laplacian mesh editing
framework that is resistant to the non-rigid-invariant prop-
erty of the Laplacian coordinates. We demonstrate the ad-
vantage of our framework in a new application which
we call configuration-independent merging. We also inte-
grate configuration-dependent merging and mesh deforma-
tion into the same framework. Due to the implicitly defined
local deformation gradients (with shearing removed) intro-
duced at each vertex, all these editing techniques are au-
tomatically detail-preserving and produce visually pleasing
deformed results. The deformed or merged results are ob-
tained by solving two sparse linear systems at interactive
rate.

We have shown that, in configuration-dependent merg-
ing, the user can choose to fix specific features during
merging. This capability can be extended to configuration-
independent merging. For each feature to be fixed, we im-
plicitly define a common deformation gradient for all the
Laplacian coordinates associated with the feature. In other
words, the feature is subject to a transformation rather
than being completely fixed like in configuration-dependent
merging.

Acknowledgments
We thank the anonymous reviewers for the helpful com-
ments. The lion model is courtesy of Robert W. Sumner.
Other models are courtesy of Stanford University and 3D
CAFE. This work was supported by a grant from the Re-
search Grant Council of the Hong Kong Special Administra-
tive Region, China (Project No. HKUST6295/04E).

References

[ACP03] ALLEN B., CURLESS B., POPOVIĆ Z.: The space
of human body shapes: reconstruction and parameter-
ization from range scans.ACM Trans. Graph. 22, 3
(2003), 587–594.4

submitted to COMPUTER GRAPHICSForum(5/2006).



12 H. Fu et al. / Effective Derivation of Similarity Transformation for Implicit Laplacian Mesh Editing

[BKZ01] B IERMANN H., KRISTJANSSOND., ZORIN D.: Ap-
proximate boolean operations on free-form solids.
In Proceedings of ACM SIGGRAPH 2001(2001),
pp. 185–194.2

[BMBZ02] B IERMANN H., MARTIN I., BERNARDINI F., ZORIN

D.: Cut-and-paste editing of multiresolution surfaces.
ACM Trans. Graph. 21, 3 (2002), 312–321.3

[FT05] FU H., TAI C.-L.: Mesh editing with affine-invariant
Laplacian coordinates. Tech. rep., The Hong Kong
University of Science and Technology, January 2005.
Technical Report HKUST-CS05-01.3

[L 0́3] LÉVY B.: Dual domain extrapolation.ACM Trans.
Graph. 22, 3 (2003), 364–369.3

[LSCO∗04] LIPMAN Y., SORKINE O., COHEN-OR D., LEVIN

D., RÖSSL C., SEIDEL H.-P.: Differential coordi-
nates for interactive mesh editing. InProceedings of
Shape Modeling International(2004), pp. 181–190.
1, 2, 3, 6, 7

[LSLCO05] LIPMAN Y., SORKINE O., LEVIN D., COHEN-OR

D.: Linear rotation-invariant coordinates for meshes.
ACM Trans. Graph. 24(2005).2, 3, 4, 8, 11

[MBWB02] M USETH K., BREEN D. E., WHITAKER R. T.,
BARR A. H.: Level set surface editing operators.
ACM Trans. Graph. 21, 3 (2002), 330–338.2

[MDSB02] MEYER M., DESBRUN M., SCHRÖDER P., BARR

A. H.: Discrete differential-geometry operators for
triangulated 2-manifolds. InProceedings of VisMath
(2002).2

[MHTG05] MÜLLER M., HEIDELBERGERB., TESCHNERM.,
GROSSM.: Meshless deformations based on shape
matching.ACM Trans. Graph. 24, 3 (2005), 471–478.
6

[NSACO05] NEALEN A., SORKINE O., ALEXA M., COHEN-OR

D.: A sketch-based interface for detail-preserving
mesh editing.ACM Trans. Graph. 24, 3 (2005).1

[SK04] SHEFFER A., KRAYEVOY V.: Pyramid coordinates
for morphing and deformation. In3D Data Process-
ing, Visualization, and Transmission(2004), pp. 68–
75. 3

[SLCO∗04] SORKINE O., LIPMAN Y., COHEN-OR D., ALEXA

M., RÖSSLC., SEIDEL H.-P.: Laplacian surface edit-
ing. In Symposium on Geometry Processing(2004),
pp. 179–188.1, 2, 3, 4, 6, 8, 9, 10

[SP04] SUMNER R. W., POPOVIĆ J.: Deformation transfer
for triangle meshes.ACM Trans. Graph. 23, 3 (2004),
399–405.3, 4

[SZGP05] SUMNER R. W., ZWICKER M., GOTSMAN C.,
POPOVIĆ J.: Mesh-based inverse kinematics.ACM
Trans. Graph. 24, 3 (2005), 488–495.3

[Tau95] TAUBIN G.: A signal processing approach to fair sur-
face design. InProceedings of ACM SIGGRAPH 95
(1995), pp. 351–358.8

[Tol03] TOLEDO S.: Taucs: A library of sparse linear solvers,

version 2.2, 2003. Tel-Aviv University, Available on-
line at http://www.tau.ac.il/ stoledo/taucs/.10

[YZX ∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO

B., SHUM H.-Y.: Mesh editing with poisson-based
gradient field manipulation.ACM Trans. Graph. 23,
3 (2004), 644–651.1, 2, 3, 4, 6, 8, 10

[ZHS∗05] ZHOU K., HUANG J., SNYDER J., LIU X., BAO

H., GUO B., SHUM H.-Y.: Large mesh deforma-
tion using the volumetric graph laplacian.ACM Trans.
Graph. 24, 3 (2005).1, 2, 6

[ZRKS05] ZAYER R., RÖSSL C., KARNI Z., SEIDEL H.-P.:
Harmonic guidance for surface deformation. InCom-
puter Graphics Forum, Proceedings of Eurographics
2005(2005).1, 2, 6, 7, 8, 10

submitted to COMPUTER GRAPHICSForum(5/2006).


