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Figure 1: Our method uses handle-aware isolines to build a reduced model. The three images visualize the isolines and rigidity information
both associated with the handles (in crimson) at the upper jaw (left), the left fore foot (middle), and the tail (right), respectively. Note that
the isolines respect the handles and the shape geometry. We associate a transformation to each isoline and identify the transformations of
isolines associated with all the handles as the reduced domain.

Abstract

Handle-based mesh deformation is essentially a nonlinear problem.
To allow scalability, the original deformation problem can be ap-
proximately represented by a compact set of control variables. We
show the direct relation between the locations of handles on the
mesh and the local rigidity under deformation, and introduce the
notion of handle-aware rigidity. Then, we present a reduced model
whose control variables are intelligently distributed across the sur-
face, respecting the rigidity information and the geometry. Specifi-
cally, for each handle, the control variables are the transformations
of the isolines of a harmonic scalar field representing the deforma-
tion propagation from that handle. The isolines constitute a virtual
skeletal structure similar to the bones in skinning deformation, thus
correctly capturing the low-frequency shape deformation. To inter-
polate the transformations from the isolines to the original mesh,
we design a method which is local, linear and geometry-dependent.
This novel interpolation scheme and the transformation-based re-
duced domain allow each iteration of the nonlinear solver to be fully
computed over the reduced domain. This makes the per-iteration
cost dependent on only the number of isolines and enables com-
pelling deformation of highly detailed shapes at interactive rates.
In addition, we show how the handle-driven isolines provide an
efficient means for deformation transfer without full shape corre-
spondence.

Keywords: Scalable Shape Editing, Handle-Aware, Rigidity-
Aware, Harmonic Fields, Isolines

1 Introduction

Handles have become a popular intuitive metaphor for differential
surface editing [Sorkine et al. 2004; Yu et al. 2004]. Users manip-
ulate the handles, and the transformations at the handles are propa-
gated to the rest of the regions [Botsch and Kobbelt 2004]. 3D ro-
tation transformations involved in the propagation are nonlinearly
dependent on (unknown) vertex positions. Therefore handle-based
deformation is essentially a nonlinear problem, generally requiring
to be solved iteratively. Solving such a problem fast is challenging,
especially for highly detailed models.

To allow scalability, reduced models approximately formulate the
original deformation problem. Let V ∈ ℜn denote the domain of
the original problem, where n is the number of vertices. The aim
is to find a reduced domain consisting of a compact set of con-
trol variables, U ∈ ℜm (m ≪ n), and an appropriate interpolation
function P : U → V. The original problem is then projected to the
reduced domain and represented in terms of U. The reduction of
the problem size leads to better performance in terms of both time
complexity and memory cost [Huang et al. 2006]. Since the re-
duced size of the model necessarily incurs some degradation in the
deformation quality, the choices of U and P are crucial to the design
of an effective reduced model.

To achieve desirable deformation quality with as few control vari-
ables as possible, an efficient reduced model should distribute the
control variables intelligently, respecting potential deformations
and the given geometry. In example-based deformation, the po-
tential deformations are learned from example shapes, and thus
the control variables can be specifically chosen to attain the de-
sirable deformation quality, alleviating redundancy of control vari-
ables [James and Twigg 2005; Der et al. 2006]. In contrast, in
handle-based interactive editing, since the user is allowed to move
the handles freely, it is challenging to determine the a priori degree
of local deformation of the mesh to aid the construction of reduced
models. We observe that the deformation propagation is along paths
connecting the handles, resulting in features along the paths being
deformed more significantly than those further away. Moreover,
these underlying propagation paths are fixed once the handles are
specified by the user, making the relative rigidity of features defor-
mation invariant. For example, for the dinosaur model with han-
dles placed at its head and feet (Figure 3), the arms and tail always
behave very rigidly during editing. This fact motivates us to find a
representation of the relative rigidity information and use it to guide
the distribution of the control variables.
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We choose to use transformations rather than vertex positions as
control variables, since the former is a more natural and simpler
way to represent deformations which consist of local transforma-
tions. Noticing that the combined deformation propagated from
all the handles is complex (e.g., at the middle branching part of a
‘Y’-shape mesh with handles at all its three ends), while the indi-
vidual propagation field for each handle is simple and regular, we
introduce a separate set of transformations to capture the deforma-
tions propagated from each handle, and blend them to represent
the combined deformation from all the handles. We model the de-
formation influence caused by a handle’s manipulation using a har-
monic scalar field valued 1 at that handle, and 0 at all other handles.
The vertices along an isoline of a harmonic field receive the same
deformation influence from the associated handle. Therefore, we
associate one transformation to each isoline and identify the trans-
formations of the isolines of all the harmonic fields as the control
variables. The handle-driven characteristic of each harmonic field
allows us to sample it at equal parametric intervals to obtain an iso-
line set that respects the relative rigidity field (Figures 1 and 3).

In a sense, all the sampled isolines form generalized bones,
like those employed in skinning deformation for interactive pos-
ing [Lewis et al. 2000]. Designing a function interpolating the iso-
line transformations to the deformed vertex positions is similar to
the skinning process. Skinning deformations, however, require suf-
ficient deformation examples or tedious manual painting of appro-
priate interpolation weights to achieve satisfactory results [Mohr
and Gleicher 2003]. In contrast, since the isolines in our method
provide a natural discrete parametric domain for the propagation
field of each handle, they enable the design of a local, linear in-
terpolation scheme that effectively relates the reduced domain and
the original domain. Here the interpolation of the reduced model
is surface-based rather than space-based [Huang et al. 2006], thus
alleviating deformation artifacts.

Our transformation-based reduced domain coupled with the linear
interpolation scheme allows effective encoding of local surface fea-
tures, e.g., the differential coordinates in differential mesh editing.
With such an encoding, our reduced model reduces each iteration
of solving the original nonlinear problem to a transformation updat-
ing step whose time complexity is dependent on only the number of
isolines (which depends on the number of handles), instead of the
mesh resolution. After obtaining the converged transformations, we
interpolate the transformations to compute the deformed positions
of all vertices.

We apply our reduced model to perform differential mesh defor-
mation. Experiments demonstrate that our method is scalable to
deformations of very large models, with both faster per-iteration
time and a smaller number of iterations for convergence. In addi-
tion, the handle-driven isolines provide a natural correspondence
between two models, enabling the design of a simple and effective
deformation transfer method without full surface correspondence.

2 Related Work

Differential Mesh Editing. Differential mesh editing is essentially
a problem of surface reconstruction from differential coordinates
representing local surface features [Sorkine et al. 2004]. This prob-
lem is nonlinear since the differential coordinates are nonlinearly
dependent on the deformed vertex positions [Au et al. 2005; Au
et al. 2006; Huang et al. 2006; Botsch et al. 2006].

For fast computation, most of the earlier work linearizes the prob-
lem by replacing the implicit nonlinear dependence with an ex-
plicit process of transformation propagation from handles [Yu et al.
2004; Lipman et al. 2004; Zayer et al. 2005; Zhou et al. 2005;

Figure 2: Manipulating the ring finger (left). Our surface-based
method (middle) produces more intuitive deformation results than
the space-based method proposed in [Huang et al. 2006] (right).

Lipman et al. 2005; Shi et al. 2006; Sorkine 2006]. For each ver-
tex, the relative degree of propagation from a handle is measured
by either geodesic distances [Yu et al. 2004] or handle-driven har-
monic fields [Zayer et al. 2005]. The latter characterizes defor-
mation propagation between handles more naturally than the for-
mer [Lipman et al. 2005]. Our method employs the harmonic fields
to implicitly define the transformations with respect to the deformed
surface.

Linear approximation methods in general suffer from serious arti-
facts under large-scale deformation. More recently, several itera-
tive frameworks to solve the original nonlinear deformation prob-
lem have been proposed, which are carefully designed to achieve
interactive editing. Au et al. [2005] pre-compute the slow factoriza-
tion of the system matrix and iteratively perform efficient updating
of the differential coordinates during editing. Huang et al. [2006]
present a general framework to incorporate the computationally ef-
ficient quasi-linear constraints as soft constraints, while allowing
a small set of time-consuming non-quasi-linear constraints as hard
constraints. Lipman et al. [2007] achieve computational efficiency
by reducing the minimization of the changes of the second funda-
mental form to a Dirichlet-type functional optimization on a rota-
tion field over the mesh.

Scalable Mesh Editing. Solving differential deformation in the
original mesh domain is not scalable to large-scale models due to
memory bottleneck, expensive per-iteration cost, and slow conver-
gence. Huang et al. [2006] project the original nonlinear differential
deformation problem into a subspace defined by a coarse base mesh
surrounding the original mesh. The subspace projection greatly re-
duces the problem size, thus reducing per-iteration cost and making
the factorization pre-computation memory affordable. They also
demonstrate faster convergence for the projected problem. How-
ever, the per-iteration cost is still heavily dependent on mesh reso-
lution.

Multiresolution mesh editing decomposes a mesh into a smooth
base surface and a series of differences as local details (see [Kobbelt
et al. 1998] and the references therein). Unlike reduced models,
multiresolution methods do not involve any projections. Hence,
they solve a new deformation problem over the base mesh, rather
than a problem projected from the original unreduced domain. In-
stead of representing a mesh as a hierarchical level of details,
Botsch et al. [2006] and Shi et al. [2006] employ a multigrid method
to solve the nonlinear optimization problem directly defined over
the original mesh.

Unlike our handle-aware reduced model, all the above methods
which aim at achieving scalable shape editing are handle-oblivious.
The method proposed by Huang et al. [2006] is most relevant to our
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Figure 3: A dinosaur model with three handles. (a), (c), and (e) are the harmonic fields corresponding to the handles at the right foot, left
foot and head, respectively. (b), (d), and (f) show the isolines and the relative rigidity information (gradient magnitude of harmonic field,
with small values (in blue) meaning large rigidity) corresponding to the individual handles at the right foot, left foot and head, respectively.
Note the sparse distribution of isolines at rigid regions (arms and tail).

reduced model. However, there are three main differences. First,
due to the strong coherence within each isoline, our isoline-based
representation needs fewer control variables than their vertex-based
reduced model. Second, Huang et al. use the vertex positions of the
base mesh as the control variables, making the projection of the dif-
ferential coordinates to the reduced domain difficult. Third, unlike
our geometry-dependent interpolation method, their interpolation
method relating the subspace and the original full space is based
on mean value interpolation [Ju et al. 2005], which is space-based.
Therefore, like other space-based deformation methods [Sederberg
and Parry 1986; Botsch and Kobbelt 2005], their method incor-
rectly assigns heavy influence to regions that are spatially close to,
but geodesically far from, a manipulated handle (Figure 2).

3 Iterative Laplacian Mesh Editing

Our reduced model is general and can be applied to all the exist-
ing differential deformation frameworks (reviewed in Section 2) for
performance improvement. However, for clear presentation, in this
paper we introduce it within an iterative Laplacian editing frame-
work [Au et al. 2005; Au et al. 2006; Huang et al. 2006], which we
briefly review here.

The rationale of Laplacian mesh editing is to represent local fea-
tures of a surface by the Laplacian coordinates [Lipman et al. 2004]
and to reconstruct the deformed surface by minimizing the differ-
ences between the Laplacian coordinates before and after editing in
a least-squares sense. Mathematically, Laplacian reconstruction is
formulated as the following energy minimization

argmin
X

‖LX−δ (X)‖2, (1)

where L is the Laplace operator matrix constructed from the orig-
inal mesh before editing, and δ (X) is the Laplacian coordinates
which are nonlinearly dependent on the deformed vertex positions

X = (x⊤1 ,x⊤2 , . . . ,x⊤nver
)⊤, xi ∈ ℜ3, with nver denoting the number of

vertices in the edited mesh. During editing, the minimization prob-
lem is subject to the handle position constraint, usually enforced
as a soft constraint [Sorkine et al. 2004; Huang et al. 2006]. The
resulting Laplacian deformation is thus equivalent to solving the
system AX = b(X) in a least-squares sense with

A =

[
L

ωΦ

]
and b(X) =

[
δ (X)
ωH

]
, (2)

where ΦX = H indicates the handle position constraint and ω is a
large constant enforcing the soft constraint (ω = 1000 in our exper-
iments).

The nonlinear system in (2) is solved using an inexact Gauss-
Newton method by iteratively updating the vertex positions

Xt+1 = (A⊤A)−1A⊤b(Xt), (3)

where t is the time step. X0 is set as the current edited vertex po-
sitions to ensure that the vertex positions are updated smoothly.
Each iteration basically involves two steps, the computation of

bt+1 = b(Xt) and the solving of the linear system A⊤AXt+1 =

A⊤bt+1. During deformation, A remains unchanged. Therefore,
the time complexity of each iteration can be greatly reduced by pre-

computing the Cholesky factorization of A⊤A.

4 Handle-Aware Reduced Model

In this section, we introduce our handle-aware reduced model. The
control variables are the transformations of isolines of harmonic
fields, respecting the handle-aware rigidity information. We rep-
resent both the vertex positions and the Laplacian coordinates in
terms of the isoline transformations to allow solving of the defor-
mation propagation problem completely in the reduced domain.

4.1 Handle-Aware Rigidity and Isoline Construction

We use a set of harmonic fields to identify the handle-aware rigid-
ity information over the mesh. For each handle i, we compute its
corresponding harmonic field ϕi by solving the Laplace equation
Lϕi = 0, with the boundary values of its vertices set at one, and
the values of the vertices of all other handles set at zero. Each re-
sulting harmonic field reflects how the movement of the associated
handle influences the deformation at each vertex of the mesh; large
harmonic values imply significant deformation. From the harmonic
field ϕi of each handle i, we identify the gradient magnitude of ϕi

at each vertex as a rigidity field, i.e., ψi = ‖∇ϕi‖. Small gradient
magnitude implies large rigidity. Figure 3 shows three harmonic
fields, each associated with a handle, located at the head and the
two feet of the dinosaur model. The free protruding regions (i.e.,
tail and arms) have small gradient magnitudes in all the three har-
monic fields, reflecting that these regions behave very rigidly during
deformation.

For visualization and comparison (see Section 5), we define the

combined rigidity field over the mesh as ψ =
√

∑i ψ2
i (see left im-

age of Figure 4). We compare this combined rigidity field with
the actual rigidity during deformation (produced by the iterative
unreduced method). The actual rigidity field is defined as the
errors deviating from local rigidity motion, that is, the residual
E = AX− b(X) for each vertex. The compatibility of these two

3



To appear in the ACM SIGGRAPH conference proceedings

Figure 4: Our defined rigidity field (left) is compatible with the
actual rigidity field (right).

fields, as shown in Figure 4, serves as evidence supporting our rigid-
ity field definition. Note that, in all the images, ψi, ψ and E are
normalized for visualization purposes.

All the vertices on an isoline receive the same degree of transfor-
mation propagation from the associated handle [Zayer et al. 2005].
Therefore, we sample the harmonic fields to get a set of isolines (see
Figure 3) and use the transformations associated with the isolines to
approximate the deformation field induced by the movement of that
handle. Employing harmonic values to interpolate transformations
at handles is not a new idea. Zayer et al. [2005] have used them to
perform explicit interpolation without respecting the deformed sur-
face, thus suffering from the translation-insensitivity problem [Au
et al. 2005; Botsch et al. 2006; Fu et al. 2007]. Our method implic-
itly solves for the transformations dependent on the deformed sur-
face through the optimization. Since more rigid regions correspond
to smaller gradient magnitudes (i.e., smaller variations of harmonic
values), uniformly distributing the isovalues automatically leads to
sparser distribution of isolines in more rigid regions. This effect
is illustrated around the tail and arms of the dinosaur in Figure 3.
Note that the sampled isolines generally do not contain vertices or
edges of the original mesh, and thus are independent of the mesh
sampling.

We identify the following transformation set

{ri, j |1 ≤ i ≤ nhan,1 ≤ j ≤ niso} (4)

as the control variables of the reduced deformable model, where
ri, j is a 3× 4 matrix associated with the j-th isoline of handle i,
with isovalue si, j = ( j−1)/(niso −1); nhan is the number of user-
specified handles, and niso is the number of isolines for each han-
dle. Note that each isoline may consist of a single loop and multiple
loops, each of which may have an arbitrary shape. As the isolines
provide a natural parameterization of the propagation fields, it al-
lows treating each isoline, possibly consisting of multiple loops, as
one rigid component. For each handle, we include two special iso-
lines: one isoline with the isovalue equal to 1 at that handle and one
isoline with the isovalue equal to 0 at all the other handles. When
only two handles are selected, since both isoline sets are exactly the
same, we use only one set of isolines. The approximation precision
of the reduced model is controlled by the number of isolines niso.
Clearly, more isolines lead to more precise approximation.

The set of all isolines essentially serve as generalized bones, like
those used in skinning deformation. Hence, the isoline transforma-
tions should reflect smooth low-frequency shape deformation. To
enforce the smoothness of deformation, we require the transforma-
tions associated with neighboring isolines to be as similar to each
other as possible:

ri, j −ri, j+1 = 0, 1 ≤ i ≤ nhan,1 ≤ j ≤ niso −1. (5)

To incorporate this smoothness term into the Laplacian reconstruc-
tion optimization in (1), we need to represent the vertex positions in
terms of the transformations of isolines (see the details in the next
subsection).

4.2 Vertex Position Interpolation

In this subsection, we describe how to interpolate the transforma-
tions of the isolines to compute the vertex positions of the original
mesh. Similar to skinning deformation, we aim to compute a trans-
formation for each vertex by interpolating the transformation set de-
fined in (4), to transform the unedited position of that vertex to the
edited position. We achieve this by first interpolating the transfor-
mations of isolines associated with each handle and then averaging
the interpolated transformations among all the handles.

We compute the (deformation) transformation r
(k)
i of vertex k

caused by handle i by linearly interpolating the transformations of
the neighboring isolines:

r
(k)
i = (1−α)ri, j +αri, j+1, with α =

ϕi,k − si, j

si, j+1 − si, j
,

where ϕi,k is the harmonic value associated with handle i at vertex
k, and j is the index of the isoline with isovalue si, j such that si, j ≤
ϕi,k ≤ si, j+1.

As larger (smaller) ϕi,k means that the vertex k is parametrically
closer to (farther away from) the corresponding handle i, it is a nat-
ural choice to use ϕi,k as the weights to interpolate the transforma-

tions r
(k)
i of all the handles: r(k) = ∑i ϕi,kr

(k)
i

1. The final deformed

vertex position is computed as xk = r(k)xk, where xk is the original
position of vertex k represented as homogeneous coordinates.

Note that the above transformation interpolations for individual

handles (to compute r
(k)
i ) and for all the handles (to compute r(k))

are both linear, therefore we can represent the interpolation from the
control variables to the vertex positions as X = WxRx, where Rx is
a column vector constructed from the transformation set {ri, j} and
Wx is a matrix constructed from {xi} and {ϕi}.

Handles that are specified on highly detailed models may contain
a large number of vertices, making the enforcement of the posi-
tion constraint computationally expensive. As the movement of a
handle has a very low degree of freedom (usually involving only
translation, rotation and uniform scaling), we adopt the method pro-
posed in [Botsch and Kobbelt 2004] to represent a handle contain-
ing many vertices by four affine-independent vertices. The han-
dle position constraint in Equation 2 can then be reformulated as
ΦX = H = QC, where Q is a matrix relating the representative
handle vertex positions C with all the handle vertex positions H.

By replacing X with WxRx, the minimization problem in (1) en-
forced with the smoothness term in (5) is projected to the domain
of the reduced model, rewritten as

argmin
Rx

‖LWxRx −δ (WxRx)‖
2 +β 2‖MRx‖

2,

where M is a coefficient matrix constructed from (5) and β is a
weight guiding the optimization (β = 0.01 in our experiments). The
iterative updating in (3) becomes

Rt+1
x = (U⊤U)−1[W⊤

x L⊤δ (WxRt
x)+ω2W⊤

x Φ⊤QC], (6)

Xt+1 = WxRt+1
x , (7)

1Note that, since the boundary conditions for all the harmonic fields sat-

isfy a partition of unity, the principle of superposition for linear partial dif-

ferential equations guarantees ∑i ϕi,k ≡ 1.
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where U = [W⊤
x L⊤ ωW⊤

x Φ⊤ βM⊤]⊤. Since the definition of
δ (X) is separable in the dimension of the vertices [Huang et al.
2006; Au et al. 2006], the above updating is performed separately
for x, y, z coordinates of the deformed vertices. Subsequent dis-
cussion refers to the separate systems; however, for convenience,
we continue to use the original symbols. Note that the size of ma-

trix Wx is nver ×4nhanniso. Hence, the original system matrix A⊤A

of size nver ×nver is reduced to U⊤U of size 4nhanniso ×4nhanniso

(4nhanniso ≪ nver for most cases) after model projection, speeding
up the updating step significantly.

4.3 Laplacian Coordinate Interpolation

In (6), the evaluation of Rt+1
x is dependent on all the vertex posi-

tions Xt at time t (to compute δ (WxRt
x)). This means that the up-

dating of Xt+1 and the updating of Rt+1
x are interdependent. There-

fore, each iteration involves both updating steps, and thus is still
computationally very expensive for large models (see evaluation
details in Section 5). The reduced model proposed in [Huang et al.
2006] suffers from a similar problem. In this subsection, we present
an approximation method which makes the computation of Rt+1

x

only requiring the updating of a subset of triangles crossed by the
isolines, instead of the whole mesh.

Similar to the vertex position interpolation, we aim to represent the
Laplacian coordinates δ (X) based on the transformations of the iso-
lines. We found that updating only a subset of the triangles crossed
by the isolines sufficiently leads to a stable system. Thus, we uni-
formly sample the triangles crossed by the isolines such that the
number of the sampled triangles is below a prescribed upper bound.

Let Γi, j denote the set of the sampled triangles for the j-th isoline
of handle i and ntri = ∑i, j |Γi, j|. Since the Laplacian coordinates
approximate the curvature normals, we compute the isoline trans-
formations using the normal fields of Γi, j . Specifically, we compute
the local transformation r̂i, j of the j-th isoline (without the transla-
tional part, thus represented by a 3× 3 matrix) by solving the fol-
lowing system

r̂i, jnk = nk, for k ∈ Γi, j (8)

in a least-squares sense, where nk and nk are the normals of triangle
k before and after deformation, respectively. To better measure the
contribution of triangle k in computing r̂i, j, we weigh the equations
in (8) with the segment length lk of the isoline crossing triangle k.
By converting the above equations into the normal equations, the
solution of r̂i, j can be computed as follows:

r̂i, j = ( ∑
k∈Γi, j

l2
k (nk ⊗nk))( ∑

k∈Γi, j

l2
k (nk ⊗nk))

−1, (9)

where ⊗ denotes the outer product.

The Laplacian coordinates in terms of the transformations {r̂i, j}
can then be expressed in matrix form δ = Wδ Rδ , where Rδ is a
column vector constructed from {r̂i, j} and Wδ is a nver ×3nhanniso

matrix constructed from the Laplacian coordinates and the har-
monic values {ϕi} both defined over the original mesh.

By replacing δ (WRx) with Wδ Rδ , (6) then becomes

Rt+1
x = (U⊤U)−1[(W⊤

x L⊤Wδ )Rt
δ +(ω2W⊤

x Φ⊤Q)C]. (10)

Since both W⊤
x L⊤ and Wδ are fixed during updating, and comput-

ing Rt
δ only involves a constant number of triangles crossed by the

isolines, pre-computing W⊤
x L⊤Wδ makes the above updating of

Rt+1
x dependent only on the number of the crossed triangles, ntri,

(i.e., independent of mesh size), thus leading to faster updating of

Figure 5: Our reduced model (middle: with only vertex posi-

tion interpolation, right: with interpolation of both vertex positions
and Laplacian coordinates) and the original unreduced model (left)
both produce visually natural deformation results, with only subtle
differences in low-frequency geometry. The isolines in the middle
and right images are associated with the handles at the right hand
and the left foot, respectively.

each iteration. All the deformed vertex positions are computed after
the updating of Rt+1

x in (10) converges.

In comparison, Huang et al. [2006] use the vertex positions of a
simplified base mesh as the control variables. Since it is hard to
represent the Laplacian coordinates in terms of position-based con-
trol variables, it is unclear whether their method can be extended to
achieve resolution-independent deformation.

Besides making the updating of each iteration independent of mesh
size, another advantage of projecting both the vertex positions and
the Laplacian coordinates to the reduced domain is that the prop-
agation of transformation (deformation) is performed completely
in the reduced domain. This means that the low-frequency defor-
mation propagation is applied over the reduced domain, leading to
faster convergence. We discuss this further in the following section.

5 Interactive Mesh Deformation

In this section, we analyze the results of applying our reduced
model to interactive mesh deformation. To edit a mesh, the user
specifies and manipulates either point or region handles [Au et al.
2005; Botsch et al. 2006]. Region handles have six degrees of free-
dom (translations and rotations); point handles have three degrees
of freedom (translations), and their orientations are computed by
the optimization. The user prescribes niso and an upper bound of

Figure 6: Changing facial expressions of the Max Planck model.
Left: the original model with two region handles and ten point han-
dles. The isolines displayed are associated with the blue point han-
dle. Middle: sad mood. Right: happy mood.

5



To appear in the ACM SIGGRAPH conference proceedings

Figure 7: Our method works well for models with high genus and
complex isoline components. Left: input model. Right: deformation
result and isolines associated with the handle at mouth.

ntri. The system pre-computes W⊤
x L⊤Wδ and ω2W⊤

x Φ⊤Q as well

as the Cholesky factorization of U⊤U in (10). Whenever the user
specifies a new set of handles to continue editing, a new deforma-
tion system is set for the new handles based on the most recently
edited result.

The isolines serving as a virtual skeletal structure also allow in-
teractive posing. Figures 5 and 13 (top) show a variety of natural
poses designed by the user using only a few handles. Sampling the
deformation propagation fields as isolines according to the handle-
aware rigidity information allows us to use only a small set of iso-
lines (niso = 20) to approximate the low-frequency geometry cor-
rectly. Note that the high-frequency details are well preserved by
the Laplacian coordinates.

Our method also supports local editing. In Figure 6, we locally
deform the Max Planck model to change his facial expressions.
This example also illustrates the ease of editing using point han-
dles. Note the natural orientations automatically found through op-
timization at the corners of the mouth.

Figure 7 shows that our method works well for models with high
genus. Such models generally have isolines of very complex com-
ponents. This example also demonstrates that our choice of treating
multiple loops of an isoline as one rigid component is effective.

Our reduced model is dependent on the handle locations and the
mesh geometry, rather than mesh sampling. Given two meshes of
different sampling densities of the same model, our deformation
tool produces visually identical deformations of the model when

Figure 8: Visually identical deformation results of the Asian dragon
model of different mesh sampling (left: nver = 50K, right: nver =
250K).

Figure 9: Twisting a horizontal bar. Top row: with original unre-
duced method (isolines drawn only for comparison purposes). Bot-
tom row: with both vertex position and Laplacian coordinate inter-
polation. Note the linear effect of the reduced model, more obvious
when fewer isolines are used (left: niso = 20, right: niso = 10).

Figure 10: Our reduced model can preserve low-frequency infor-
mation better than the unreduced model. Left: input model. Mid-
dle: result with the original unreduced model. Right: result with
our reduced model.

manipulated with the same set of handles and the same number of
isolines. The deformation of the Asian dragon shown in Figure 8
demonstrates this fact.

Clearly, the reduced model suffers from approximation errors, due
to both the vertex position interpolation and Laplacian coordinate
interpolation. In Figure 9, we show that the resolution of the re-
duced model (i.e., the number of isolines) affects the deforma-
tion quality. The bar model is twisted by 175 degrees, and there
is a larger linear effect when fewer isolines are used. From our
experience, 20 isolines are usually sufficient to generate accept-
able results for most models. Figure 5 compares the results of
the reduced model and unreduced model. All the deformation
results are visually natural, with only subtle differences in low-
frequency geometry. In fact, in certain deformation scenarios, our
reduced method yields better deformation quality than the origi-
nal unreduced method, as demonstrated in Figure 10. Since the
differential coordinates only record the (local) high-frequency de-
tails, differential-based deformation cannot preserve well the low-
frequency geometry (global shape of the torus which determines the
orientations of the bars). In contrast, our reduced model can better
maintain low-frequency information, due to the strong coherence
within each isoline.

Performance Analysis. The overall timing performance of iter-
ative Laplacian deformation depends on two factors: the compu-
tational cost of each iteration, titer, and the number of iterations
required to achieve convergence, niter. We demonstrate that our
reduced model greatly reduces both titer and niter.

Table 1 gives the mesh statistics and detailed timing of our experi-
ments, measured on a 3.2 GHz Pentium 4 PC with 3GB of RAM.
Note that with only the vertex position interpolation, our reduced
method already greatly improves the performance. However, since
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Model nver nhan niso ntri t0 t1 t2

Armadillo 172974 4 20 2486 2675.9 987.4 10.9

Bar 28802 2 20 570 335.1 34.8 6.7

Bar 28802 2 10 570 339.2 31.7 6.4

Buddha 959420 2 20 624 n/a 1455.7 16.2

Buddha 1400051 2 20 624 n/a 2220.4 20.0

Dinosaur 14050 3 20 1655 118.6 26.3 5.8

Dragon 50002 3 20 1758 472.0 141.9 6.2

Dragon 249677 3 20 1830 3518.5 667.8 7.3

Dragon 249677 4 20 2461 3515.2 1088.4 10.2

Dragon 984346 3 20 1837 n/a 1952.3 19.4

Hand 24795 2 20 615 292.4 31.2 6.5

Max Planck 49889 12 20 4210 625.1 306.6 102.3

Pegasus 63518 2 20 631 857.9 129.6 10.8

Torus 2747 2 20 483 27.3 3.7 1.2

Table 1: Columns t0, t1 and t2 show the performance comparison
between the unreduced method, and the reduced model with only
vertex position interpolation, and with interpolation of both the
vertex positions and the Laplacian coordinates, respectively. All
timings are per-iteration updating costs (in milliseconds), with the
display time excluded for fair comparison.

the algorithm updates the transformations Rx and the vertex posi-
tions X of the whole mesh alternately, per-iteration cost titer is still
heavily dependent on the mesh resolution, making interactive edit-
ing of extremely large models prohibitive. By representing both
the vertex positions and the Laplacian coordinates in terms of the
control transformations, we make titer largely dependent on only
the number of sampled triangles defining the transformations of the
isolines, ntri, independent of mesh resolution. Due to the limited
CPU cache, titer may fluctuate slightly among models of similar
nhan, niso, and ntri but of different sizes.

The graph in Figure 11 compares the convergence rate of the orig-
inal unreduced method and our reduced model for two specific ex-
amples, the Armadillo in Figure 5 and the dinosaur in Figure 12.
As the two models have free protruding regions (the head and tail
in the Armadillo, and the arms and tail in the dinosaur), causing
higher nonlinearity of b(X), the unreduced method needs a large
niter to converge. It is observed that projecting only the vertex po-
sitions to the reduced domain already makes the convergence rate
much faster. With the interpolation of both the vertex positions and
the Laplacian coordinates, the propagation of deformation is done
completely in the reduced domain, thus further reducing niter sig-
nificantly. For all the examples shown in this paper, the average
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Figure 11: Convergence comparisons for the Armadillo and di-
nosaur deformation examples in Figures 5 and 12, respectively. The
y-axis represents the step size in the logarithmic scale.

niter is less than 20.

Implementation and Discussions. The computation of the handle-
driven harmonic fields is the bottleneck of our system, in terms of
both time complexity and memory cost. Fortunately, this costly
computation is done only at the initialization stage whenever the
handles are set, rather than during interactive editing. Our initial
implementation is based on a direct solver [Toledo 2003]. How-
ever, the memory cost of factorizing the system matrices con-
structed over the original mesh domain makes our unoptimized
implementation prohibitive for models more than 500K vertices
with 4 handles. To alleviate the problem, we resort to a multigrid
method [Aksoylu et al. 2005]. Since the multigrid method has linear
memory cost, theoretically the memory cost of our reduced model
is only O(nhannver). With the multigrid implementation, our system
can handle larger models (see Table 1). Like most differential mesh
editing frameworks, our system suffers from the problem of slow
initialization of a large-scale system. The multigrid implementation
also alleviates this problem. For example, it takes about 11 seconds
to initialize the system for the dragon model with 250K vertices and
three handles, while a direct solver requires 90 seconds.

As discussed above, we compute only a small subset of the vertex
positions to update the transformations of the isolines. However, to
visualize the deformation of the entire model during convergence
we display a coarse version of the mesh (see the accompanying
video). The coarse mesh is obtained by QEM simplification prior
to interactive editing, and the positions of the vertices are also com-
puted through Equation 7 as they are a subset of the original set
of vertices. An alternative solution is to update the display of the
whole mesh, say, every 30 transformation updating iterations. This
functionality can be greatly accelerated using a GPU-based tech-
nique similar to matrix palette skinning [Lindholm et al. 2001].

A straightforward handle-driven reduced model would be one that
uses vertices to summarize both mesh geometry and the derived
rigidity information. We compare our isoline-based reduced model
with such a vertex-based reduced model. We obtain the support
domain of a rigidity-aware vertex-based reduced model by em-
ploying rigidity-aware mesh simplification, which is a variation of

Figure 12: (a) original unreduced model. (b) isoline-based re-

duced model (the isolines and rigidity field shown are associated
with the handle at the head). (c) rigidity-oblivious vertex-based re-
duced model. (d) rigidity-aware vertex-based reduced model (with
the combined rigidity field visualized).
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Figure 13: Examples of deformation transfer based on handle correspondence, instead of full triangle correspondence (from wolf to dog,
from horse to elephant).

QEM [Garland and Heckbert 1997] with errors guided by the rigid-
ity field ψ . We then associate a transformation with each vertex
in the simplified mesh. Like the harmonic field for each handle,
we define a harmonic field for each vertex to relate the reduced
domain and the original domain. For comparison, we have also
implemented a rigidity-oblivious vertex-based reduced model, with
the vertices obtained through standard QEM.

Figure 12 compares isoline-based and vertex-based reduced mod-
els under the same number (= 60× 12) of control variables. As
expected, the rigidity-oblivious vertex-based reduced model pro-
duces the worst result due to the waste of precious control variables
at rigid regions. Our isoline-based reduced model generates better
deformation quality than the rigidity-aware vertex-based reduced
model, because each isoline influences a larger region, thus better
preserving the shapes. The strong coherence within each isoline
also enables our reduced model to use much fewer control vari-
ables. In addition, it is noteworthy that vertex-based methods are
much slower (in terms of per-iteration cost) than our isoline method
because the interpolation of the former is global, leading to much
denser system matrices. We note that our choice of using one set
of isolines for every handle might not be optimal. However, we
found it hard to design alternative representations with fewer con-
trol variables to capture the complex combined transformation in-
fluence from all the handles.

We adopted the cotangent weighting scheme to define the discrete
Laplace operator [Au et al. 2005]. Since the domain of the discrete
Laplace operator is the 1-ring neighborhood of a vertex, harmonic
fields may contain values outside the range [0,1] near the boundary
condition, especially when point handles or curve handles (rather
than region handles) are used. However, the overflow of these out-
of-range values is relatively very small (e.g., −5e−17), and its influ-
ence on the isoline sampling and the final deformation is visually
insignificant. Therefore, we only sample the harmonic field within
the range [0,1] to capture the influence of a handle.

Limitations. As both the time complexity and the memory cost
of our reduced model is linear in nhan, our method achieves less
gain for editing scenarios with a large number of handles. Further-
more, in some special editing scenarios, the isoline subspace does
not capture well the essence of the true transformations. For exam-
ple, assume a planar region constrained by a handle around it. If
the user drags a handle in the middle of the planar region vertically,
the isolines would merely be translated without the expected rota-
tions, and the details over the planar region will not be reoriented
as expected. A possible solution is to employ multiple transforma-
tions rather than only one for each of such isolines to better cap-
ture the local rotations. Lastly, like other iterative Laplacian editing

frameworks [Huang et al. 2006; Au et al. 2006], our system re-
quires specifying extra in-between handles to achieve deformations
with rotation angles larger than π .

6 Deformation Transfer

In this section, we apply our reduced model to perform deforma-
tion transfer for triangular meshes. Existing related techniques re-
quire building per-triangle or per-vertex correspondence between
the source and the target models [Sumner and Popović 2004; Zayer
et al. 2005]. Although the mapping between models is not required
to be one-to-one, to obtain a meaningful mapping, these methods
need dozens of correspondence pairs, especially for models with
large shape differences.

As the harmonic isolines provide a natural parameterization of low-
frequency geometry of surface, we build correspondence between
the harmonic isolines for deformation transfer. The user only has to
specify corresponding pairs of handles on the source and the target.
Choosing the same number of isolines per handle then gives iso-
line correspondence. The deformations are then transferred from
the source to the target through isolines. While the number of cor-
respondence pairs needed in previous methods mainly depends on
the shape differences between the source and the target models, the
number of handle correspondences needed in our method largely
depends on the deformation complexity to be transferred, with rigid
regions not requiring correspondence. For example, in Figure 13
(right), as the user expects the elephant trunk and tusks to be rigid,
no handles are placed at their ends.

Note that, like [Sumner and Popović 2004], our method requires
the source and the target to have similar semantic correspondence
and poses in order to produce visually pleasing deformation trans-
fer results. In addition, due to the possible shape difference be-
tween the source and the target (e.g., the horse/elephant example in
Figure 13), the transformation for each isoline should be modeled
without the translational component. This motivates us to model the
per-isoline transformation from every mesh edge (thus eliminating
the local translations) by solving the following linear system:

Wsrc
e Re = EsrcXsrc, (11)

where Xsrc is a column vector consisting of the deformed source
vertex positions and Esrc is the vertex-edge transform matrix of the
source model such that EsrcXsrc are the directed edge vectors. Wsrc

e

is constructed in a similar way as Wx and Wδ , but interpolating
all the edges. Solving (11) in a least-squares sense results in the
approximated translation-free transformations Re at all isolines.
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Figure 14: Expression transfer using handle correspondence.

Transferring Re to the target model is done with the system below

EtgtXtgt = Wtgt
e Re, (12)

where W
tgt
e is the interpolation matrix of the edges for the target

mesh and its given handles, and Xtgt and Etgt are the deformed
vertex positions and the vertex-edge transform matrix of the target
mesh, respectively. Solving (12) in a least-squares sense produces a
deformed target mesh with deformation similar to the source model.
Since Etgt is translation independent, we need to fix one target ver-
tex to make (12) solvable.

Results. We apply our deformation transfer method to transfer
poses and expressions. The deformations of the source models are
all obtained using our interactive mesh deformation tool. In Fig-
ure 13, poses of articulated animals are transferred. By placing the
handles at the skeletal joints of the animals, we can use a small set
of handles to produce a variety of transferrable poses. For exam-
ple, we use only 9 handle correspondences to transfer the sniffing
and running poses of the wolf model to the dog model. With 13
handle correspondences, more complex poses, for example, the sit-
ting pose, are transferrable. Building a full mesh correspondence
between models with large shape differences, e.g., the horse and
the elephant models, requires a large set of correspondence pairs,
typically more than 60 pairs in [Sumner and Popović 2004; Zayer
et al. 2005]. In contrast, without bothering with full mesh corre-
spondence, our method focuses on the deformations to be trans-
ferred and is able to produce natural results using only a small set
of handle correspondences, at most 15 pairs in our examples. Fig-
ure 14 shows an example of facial expression transfer. Subtle ex-
pressions in the source model are successfully captured by isoline-
based transformations (driven by ten point handles and four region
handles) and adapted to the target faces.

Limitations. When the source models are highly deformed, e.g., as

in cloth deformation, more handles need to be placed to faithfully
capture the source deformations, which increases the time complex-
ity and the memory cost. Additionally, there is undesirable rubber-
like deformation effect at the elephant legs in Figure 13. This is a
common limitation of all differential mesh editing frameworks. To
alleviate this effect, it is possible to either add more control han-
dles or incorporate skeleton constraints [Huang et al. 2006] into our
system.

7 Conclusion

We present the notion of handle-aware rigidity and develop an
isoline-based reduced model that respects the handle-aware rigid-
ity information and the geometry. The isolines serve as a gener-
alized skeletal structure, which is independent of mesh sampling
and transparent to the user who does not need to manipulate or
control the isolines. We apply our reduced model to the applica-
tions of deformation transfer and interactive deformation, achiev-
ing detail-preserving deformation with resolution-independent per-
iteration cost, fast convergence rate and linear memory cost. Our
method retains the ease of implementation of the original differen-
tial mesh editing frameworks.

We believe that the handle-aware rigidity has large potential for
other applications, such as 2D contour deformation and as-rigid-
as-possible image manipulation [Igarashi et al. 2005; Weng et al.
2006].
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